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Abstract This paper focuses on Generalized Impedance Boundary Conditions (GIBC) with second
order derivatives in the context of linear elasticity and general curved interfaces. A condition of
the Wentzell type modeling thin layer coatings on some elastic structure is obtained through an
asymptotic analysis of order one of the transmission problem at the thin layer interfaces with
respect to the thickness parameter. We prove the well-posedness of the approximate problem and
the theoretical quadratic accuracy of the boundary conditions. Then we perform a shape sensitivity
analysis of the GIBC model in order to study a shape optimization/optimal design problem. We
prove the existence and characterize the first shape derivative of this model. A comparison with the
asymptotic expansion of the first shape derivative associated to the original thin layer transmission
problem shows that we can interchange the asymptotic and shape derivative analysis. Finally we
apply these results to the compliance minimization problem. We compute the shape derivative of
the compliance in this context and present some numerical simulations.
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1 Introduction and main results
1.1 Introduction and general notations

This paper deals with the mathematical analysis and the shape optimization of some elastic struc-
tures coated with a very thin layer of constant thickness. Our objective is first to construct a
model problem where the thin layer effects are characterized by perturbed boundary conditions
with second order derivatives called boundary condition of the Wentzell type. Then we aim to make
a shape sensitivity analysis for this reduced problem using shape calculus tools. These subjects
find applications in various area such as elastographic imaging and structural optimal design.
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On the one hand, the theoretical and numerical analysis of a thin structure could be a very
complex work. Hence, in order to overcome this difficulty, a classical strategy is to approximate an
original structure with a thin layer (see, e.g., [I0LB046L16]) or a rough boundary (see, e.g., [3611]) by
another domain with new boundary conditions, called Generalized Impedance Boundary Conditions
(GIBC). The GIBC contain some informations on the geometry and the material characteristics
of the thin structure. For exterior problems, artificial (or approximate) conditions are another
example (see, e.g., [2529]). These boundary conditions are generally simple differential conditions
obtained from an asymptotic analysis of the full elliptic equations in the thin layer with respect to
a characteristic length: the thickness of the layer, the scale of the roughness, the diameter of the
artificial boundary, for the previous three examples, respectively. In linear elasticity, it deserves to
mention the book of Ciarlet [21], where a local representation of the GIBC is proposed, and others
works [261[I1] in the context of thin elastic plates or shells. The construction of GIBC is also treated
for example by Antoine et al [9], by Poignard [44] or by Haddar et ol [31[32,[I8] in acoustics and
electromagnetism for general three-dimensional surfaces.

On the other hand, the problem of finding an optimal shape for physical issues described by
elliptic boundary value problems is widely studied from many years. In linear elasticity, the idea is to
study the influence of the shape of a structure on its behavior as for example its rigidity. To this end,
several methods can be employed as the classical geometrical shape optimization approach (see, e.g.,
the work of Murat et al. [39]), the homogenization method (see, e.g., the work of Allaire et al. [5]),
the topological shape optimization approach (see, e.g., the work of Garreau et al. [28]) or the so-called
level-set method (see, e.g., the works of Allaire et al. [7]). Several works deal about the problem of
minimizing the compliance of the structure where standard boundary conditions are imposed on
the free boundary. We can here mention the recent works of Allaire et al. [6], Amstutz et al. [§],
Novotny et al. [41] and Dambrine et al. [24]. This list of references is far from being exhaustive
and we also refer to the books of Sokolowski et al. [45], of Henrot et al. [35], of Allaire [3l4] and of
Haslinger et al. [33] for background notions about shape optimization methods.

Finally, more recently, one can find new advances on the computation of shape derivatives
and/or the solution of shape optimization and inverse obstacle scattering problems when a GIBC
of the first and second orders are imposed on the unknown boundary. For example, we can mention
the works of Cakoni et al. [I5[14] and Caubet et al. [I7] for the Laplace’s equation, of Bour-
geois et al. [12] and Kateb et al. [37] for the Helmholtz equation and of Chaulet et al. [19] for the
Maxwell’s equations.

The present paper is dedicated to the shape sensitivity analysis when first-order GIBC are
imposed on the free boundary of some elastic structures.

General notations. For a smooth bounded open set w of R? (d > 2) with a boundary I, we denote
by H*(w) and H*(I") the standard complex valued, Hilbert-Sobolev spaces of order s € R defined
on w and I respectively (with the convention H? = L?). Spaces of vector functions will be denoted
by boldface letters, thus H® = (H*)%. Moreover the tangential gradient is denoted by Vr and the
surface divergence is denoted by divp. For any vector field w, Vu is the matrix whose the j-th
column is the tangential gradient of the j-th component of w. For any matrix-valued function JF,
divp F is the vector whose the j-th component is the surface divergence of the j-th column of F.
We denote by I; the d x d identity matrix. Finally, notice that for two matrices A and B, we denote
by A: B the matrix scalar product between A and B.

1.2 Setting of the problem, main results and organization of the paper

Introduction of the two considered problems. Let {2 be a Lipschitz bounded open set of R?,
where d > 2 is an integer representing the dimension. We assume that the solid {2 consists of
an isotropic material with a linear behavior. The boundary of (2 is such that 92 =: I'pb U I'y
where I'p and I'y are two non-empty open sets of 92 and |I'p| > 0. Let 6 > 0 be a fixed (small)
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real number and let us define the following set of admissible shapes:

Os = {w CC £2 be a smooth (at least C?) open set such that d(z,d62) > § for all z € w

and such that 2\w is connected}. (1.1)

Let us consider a (nonempty) inclusion w € Os with boundary dw =: I'. Then 2\W represents
a reference configuration of an elastic solid assumed to be built on I'p. We denote by n the unit
normal vector to 9f2 and I" directed outward to {2\t. Moreover, H represents the mean curvature
of I' and b is the signed distance.

We denote by Aext the Hooke’s law defined, for any symmetric matrix &, by

Aext f =2 Hext g + Aext TI'(E) Id7

where fiext > 0 and Aexy > 0 are two positive constants which represent the Lamé coefficients of
the material making up the solid and we introduce, for any u € Hl(Q), the symmetrized gradient

1
e(u) := 3 (Vu+'Vu) .
Let € > 0. We consider that I" has an interior thin layer with thickness € surrounding w defined by
wip={z+sn(x)|zeland 0< s<e}.

We recall that the normal vector n is directed inward the inclusion w. We set w® := w\wf,, and
we denote its boundary by I'*. We also denote by n® the inward unit normal vector to I'*. In the
sequel, we use the lower index e for all quantities related to 2\@w and the lower index i for all
quantities related to wi.

We introduce the following Sobolev space
H}D(Q\D) ={ve H'(2\w); v=0o0n Ip}.

Let f € L?(£2\w) be some exterior forces and a load g € H™Y?(I'y). We are concerned with the
following transmission problem

—div Aexre(us) = f in N\w
—div Ajpre(us) =0 in w,
u; =0 onIp
(Aexte(ué))n=g on I'y (1.2)
(Ainte(us))n = (Aexte(us))non I’
u; = u; on I'
Aipte(u)n® =0 on I'¢,

where Ai,; represents the Hooke’s law associated to wi,, with Lamé coefficients pins > 0 and
Aint > 0. The solution of such a problem exists, is unique and belongs to H}, (£2\@w U wg,,) thanks
to the Lax-Milgram theorem and the Korn’s inequality.

We introduce the following Hilbert space

V(D) ={$ e L(I); e () e LX(D)},
: 2 2 2 12
endowed with the graph norm ||9[[3, ) := (H’QZJHLQ(F) +|le, (1/))||L2(F)) where

6F(¢) = %Hd (VF’I,D—FtV[*’(p) Iy and I;:=1;—n®n. (13)

We denote its dual space by V'(I"). Then we set
H(Q\W) = {v e H}_ (2\w); vir € V(I')}.

1/
The space H(£2\w) endowed with the graph norm ||v||3(o\z) := (HvH%l(Q\m + H’UH%(F)) is a
Hilbert space.
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We prove below (see Proposition that the solution of the transmission problem (|1.2)) can be
approximated using an asymptotic analysis by the solution w € H(2\w) of the following problem
with Generalized Impedance Boundary Conditions (GIBC) on I:

—div (Aexte(u)) = f in QN\w
u=0 onlp
(Aexte(uw))n=g on 'y (14)
(Aext e(u))n — edivp(o,.(uw)) =0 on I.
Here, we have used the following notations:
0 () = Aine (divrw) g + 2piing €, (u) = Ajnee, (u) (1.5)

Zintg = 2,U/int f + )\int Tr(g) Hd7

where iy and Aint 1= % are the modified Lam constants of the thin layer. The well-

posedness of this problem is studied in Appendix [A] (see Proposition [A.1]).

Remark 1.1 (i) The negative Wentzell-type operator ¥ — —divp (o, (1)) is a positive symmetric
operator bounded from V(I') to V/(I"). Indeed we have

(=divr(o,(¥)), p)v (v = Axint(divf¢)(diVF¢)dS + 2lint /Fep(ib) ren ()
= (¢, —divr(o.(¥)))v ) v/ (r)-

(ii) For any v € L*(I'), let set v, := 1 -n and v, := 9 — 4, n. Then we get the following
inclusion {9 € L*(I'); 4, € Hl(F)} C V(I') thanks to the equality

€r (1:[)) =é€r (d’t) + ¢n[D2b] .

Moreover, using the formulas given in [2I, page 88|, one can check that the operator ¢ €
V(I') — e.(¥) € L*(I") corresponds to the operator v,s defined in [2I, Theorem 2.7.1].
Using an atlas for the boundary I', one can derive an inequality of Korn-type on 2-dimensional
compact manifolds without boundary from [2I, Theorem 2.7.1] ensuring that there exists a
constant ¢y > 0 depending on I such that

) ) 1/2
(el + IalEary) < colllivir.
In other words, the two spaces coincide, i.e.
{v eL(I); ¢, e HI(D)} = V(D).

We summarize the notations concerning the domains in Figure |1 below.

Main aims and results of the paper. The first aim of this work is to derive the GIBC on I" given in
Problem . To do this, we perform an asymptotic analysis on the transmission problem
with respect to the thickness of the layer. We then obtain the following main result of this paper
which gives the rate of convergence of this analysis. This part is treated in Section [2] and uses
asymptotic results given in Appendix [B]

Theorem 1.1 If f € HY2(\@), then there exists a constant C, depending only on the domains 2
and w, such that
I — w1 gy < C %,

where w € H(2\W) is the solution of Problem (L4) and us € Hp (2\w) is defined by Prob-
lem (L.2).

The second main aim is to make a shape sensitivity analysis of this problem. Hence we prove the
existence of shape derivatives with respect to the shape w and characterize the shape derivative
of Problem (we refer to Section for some reminders about the definition of the shape
derivative). Then we obtain the following second main result.
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(a) (b)

Fig. 1: Notations for the thin layer model (left) and the obtained GIBC model (right).

Theorem 1.2 Let V € {6 € C?>™ = C? N W (R%); supp(0) C 25; [|0]/2,00 < min (g, 1)} and
let u € H(2\W) the solution of Problem , The shape derivative u’' of w, which belongs
to L2 (2\W), exists. Moreover, if u € H*(I), then u’ € H(2\®) is the only solution of the following
boundary value problem

—div (Aexse(u’)) =0 in Q\w
u =0 on I'p
(Aexte(u'))n =0 on I'y (1.6)
(Aext e(u))n — edivp(o.(u')) = &(u,V,) on I

with
£(u, Vi) i= Vo f + divp (vnnd (Aexse(w)) Hd) — edivp (Vn([D%] ~HII)o, (u))
— edivp (vn (Aine q (3 ([D?6)Vru + (D] V ru))) I11,) ) + edivp (0, (VaOnu))

+¢e ([D?b] + ndivpIly) (dive (Vao . (w)) ) +edivp (m (3 ([Vruln® VrV, + ViV, @ [Viuln)) ),
(1.7)

where Vi, :==V - n, where H is the mean curvature of I' and b is the signed distance.

We also provide an asymptotic analysis on the shape derivatives for the transmission problem
and compare it with the shape derivatives of Problem . This analysis concerning the shape
calculus is done in Section [Bl

We conclude this paper with an example of application of this work concerning the minimization
of the compliance in Section [4l We compute the shape derivative of the compliance through the
introduction of an adjoint problem and make some numerical simulations in the two-dimensional
case in order to illustrate and validate our theoretical results. Thus, defining the compliance of the
structure 2\w as

J(2\w) := /Q\Aexte(u) ce(u),

where u € H(£2\w) solves Problem (1.4]), we obtain the following expression of the shape gradient
of this cost functional.
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Theorem 1.3 Let V € {6 € C*> = C* N W>*(R?); supp(0) C 25; [|0]|2,00 < min (§,1)}. If
u € H*(I'), then the shape derivative of the cost functional can be written as

VI(\@) -V = /F Vi €, p+ w)ds + /F Vi (Aexce(u) : e(w)) (18)
where u € H(\@) is the solution of Problem and where
€ (u,v) = — (T (Avse(w)) I13) : Vrv-+ ] ([D%8] ~ HIT5)o, (w) :Vro+ (D]Vru) 0, (v)
+ (Duu)divr (o, (v)) + 0, (w): (Vr ((Vroln) +divy (o, (0)[Vruln) L+ f -0

and p € H(2\w) is solution to the following adjoint problem

—div (Aexve(p)) = f in Q\w
p=0 on I'p
(Aexte(p))n =g on I'y (1.9)
(Aexs e(p))n — edivr (o, (p)) = 2 (Aexs e(uw)n) on T,

with V, :==V -n and b denoting the signed distance.

Remark 1.2 We are confident that the regularity assumption v € H?(I") made in the two previous
theorems is useless since automatically satisfied. Unfortunately, up to our knowledge, the arguments
to obtain it are not trivial and we postpone this study to a forthcoming work.

2 Derivation of the GIBC model and convergence analysis

This section is devoted to the derivation of the GIBC model (1.4]) analyzed in this paper and to
the proof of Theorem To do this, we make an asymptotic analysis with respect to the thin
layer of the transmission problem (|1.2)).

2.1 Asymptotic analysis of the transmission problem

Let N € N. We want to approximate the solution u¢ € H}D (2\w) of the transmission problem (1.2))
by the solution 'v[gN] of some boundary value problems of the form

—div Aexte(’va]) =fin Q\w
va] =0onlp
(Aext e(v[aN])) n=gonlly (21)
C (5, Aexte(v[gN])nm[eN}) =0onl,

where [lug — viyllm (0\w) = O(eN*t1) and C (s,AeXte(va])n, va]) is a so-called Generalized
Impedance Boundary Condition (GIBC). To do so, we follow the procedure described for example
in [46L[37]. For any € I' and s > 0, we set u(xz + sn(z)) =: u(z,s) and we use the change of
variables y = x + sn(z) = ¢ + eSn(x) with S € [0, 1]. We set u(z, s) = u(z,eS) =: U(z, ).
Firstly we obtain the following asymptotic expansion when ¢ — 0 (see Appendix [Bffor details):

1

div Ainee(u) (v + eSn()) = 0% +eMds + Y A, | Ulx,S), (2.2)

n>2
where
Ao = (Aint + 2pine )0 @ 0+ pring (Is —m @ n),

MNU := pint HU + (A\ing + uim)(n divpU + V(U - n))7
AU = A2)2U + SAle(i‘)sU,
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with
221U = — i T(D?02)U — (Aiat + ptine) (n(Te([D?]V £ U)) + [D2]V (U - m)),
A29U := (Aint + ping)VrdivrU + i ArU — Aien(Tr([D?0]VU)) — pine ([D?0]V U] )n.

Moreover the traction trace operator is defined on I, i.e. for S = 0, by
1
Ainte(U) = ngasU + Aingndiv,U + Mint [VFU}II
and it admits the following expansion on the surface I'¢, i.e. for S = 1, (see also Appendix [B| for

details):

1
Ainee(Ui(-, 1)) = — 4005 Ui (- 1) + BYU;(-,1) + Y 'B{Ui(-, 1),
>1

with
BYU := \yndivrU + p3n [V U] n,
B!U := — (/\intn(Tr([DQb]Vp U)) + pine (D3] V11 U)n).
Secondly we set us(z) := > e"ul(z) in 2\w and ui(z,s) := Ui(z,S) = Y e"Ux,S5)

n>0 n>0
in I" x [0, 1]. Hence the transmission problem (1.2)) can be rewritten as follows:

— Y ediv Aexte(ul) = f in N\w
" ngo e"0Z N UL = — n; e"A,05UM Tt — n; AU — .. in T x (0,1)
Y e"ul=0 on I'p
> " (Aextnez(ztﬁ)) n=g on I'y
nz;fg”(Acxt e(u” H)n = nZ;O e"0sAgUT + n2>:1 e"BYU ! on I x {0}
ngoen/lou? = ngo e" Ao U? on I' x {0}
n2>:0 e"9s A Ul" = _n§>:1 e"BYU ! — n§>:2 e"BiU 2 +--- on I x{1}.

Then we prove the following result.

Proposition 2.1 The GIBC, defined on I', modeling the interior thin layer effects of the inclu-
ston w for N = 0,1, are given by

C (s,Aexte(v[gN])n, va]) = (Aexte(v[gN])n> + Cg’N'u[EN],
where C&9 := 0 and C5'v := —edivp (Zintep(v)) .
Proof The rank n = 0 allows us to compute U? only. The solution U is characterized by

024U =0  inI x(0,1)
9sAoUY =0 on I' x {1}
AU = Agul on I' x {0} .
We deduce AgUY(z, S) = Aouglp(x).
When n = 1, we obtain the two systems
024U} = —4,05U0% =0 in I" x (0,1)
9sAoU} = —B{U) = B, on I" x {1}
/10U21 = Aoui on I' x {O}
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and
—div Aexe(ul) = f in N\w
ul =0 on I'p
(Aext e(ug)) n=g on I'y (2.3)
(Aext e(ud))n = 954U} + BIUY on I
We obtain AgUj}(z, S) = —SBju|(z) + Agug p(z) and
(Aexs e(ul))n = 954U} (-,0) + BYUY(-,0) = 0. (2.4)

In this case we approximate ug by the function v, = u? and then (Aey e(u —'U‘[EO]))H =0=0(e).
When n = 2, we obtain the two systems
024002 = —A;105U0} — A5 ,U0% in I' x (0,1)
054, U? = —BYU! —B/UY  on I x {1}

AU? = Agu? on I' x {0}
and
—div Aexe(ul) =0 in N\w
ul =0 onIp
(Acxt e(ué)) n=20 on I'y (2.5)
(Aext e(ul))n = 954oU% + BIU! on I

We compute 0% 4,U%(x, S) = AlAngguglr(x) - AQ,nglr(x) and we obtain
2 S? —1R0 0
AOUi<~,S): 7—5 (/11/10 Bt _A212)u6|l—'
+ S(B?AalB?ugw - Bg“éw - Btlug\F) + Aoug\r
and
(Aexs e(ug))n = 05 A0 U7 (-, 0) + B{U}(-,0) = — (4145 'B] — A3 5 — BY4;'BY + B}) ] .
We find
s
04—1p0 __ . : A . . int
22

= ﬁn;'u/lntHndIV[‘ + )\intn(n . A[‘) + AintnTr([DQb]V[")

ndivp - +[Vp-]n)

Aint Mint . 2
LAt G v — i ([D2B]V - )n,
Ko 2piy » P00~ pin (DY)
>\in .
AlABlB? = Al ()W’—;//L-tndIVF . +[v1“]n)

= A\t Hdivy + pint HV e In 4+ (Ains + fing)n(n - Ap)
)\int(Aint + ,U/int)
)\int + 2,uint
M AG'BY — BYAG'BY + B} = AienHdivy + it H[V - Jn + pigen(n - Ap)
2

+#n;,llmt (Vrdivp — Hndivp) — (Aint — Mint)nTl“([D2b]vF' ).

Vrdive + (Aing + fing)nTr([D*6]V - ),

We finally use
Vrdivy — Hndivy = divp((divy ) (I~ n @),
H[Vr In+n(n- Ar) +nT([D?]Vr:) + ([D*]Vr )n = dive (0@ [VrIn+ [Vr Jn@n)
to get

2)\intﬂint

.0 , 07 , ¢t 0
ot + i (le['ue)Hd + /,Lmtﬂd<[vpue] + [vFueDHd> . (26)

(Aexs e(ul))n = divy (
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In this case we approximate the solution u¢ by the function v[el] that satisfies Problem (2.1]) with
the following boundary condition on I

2)\int Hint

(Aext €(vfy)))n — edivp (A. . (divrop)Ha + Mintﬂd<[vrv[51ﬂ + t[vafl]])Hd> =0.

Setting u[al] = ul +eul, we deduce the following estimate which permits to prove Theorem
below.

Lemma 2.1 We have
(Aext e(ufl] - 9[61]))11 + Cs’l(ufl] - 'U[sl])
= EQdin (%tuim(din’u,l)Hd + i tﬂd([VF’ull] + t[Vpul])Hd> = 0(62). (2.7)
)\int + 2Hint € " ¢ €

2.2 Convergence analysis (Proof of Theorem [1.1))

We focus now on the remainder r[EN] = v[EN] —u for N = 0,1. We obtain the following result
which proves Theorem |1.1

Theorem 2.1 Let N = 0,1. If f € Hl/Q(Q\w), then there exists a constant Co\g independent
on € such that
< CQ\U €N+1.

13
HT[N]HHl(Q\E)

Proof We follow the procedure described in the proof of [23] Theorem 4.1]. The idea is to decompose

3 _ E  u__ py€  __nyE E _ € € ._ »,0 e ._ ,,0 1

the remainder, for N = 0,1, as 7y 1= vy —u{y) + Uy —u, where ufy, := u; and uf); := uc+eu,.
N

Firstly we set RY := uf — anu” and we denote by RQ{ . and Ré\,[i the restriction of RY

n=0
respectively to 2\w and to w¢,,. It is straightforward to show that Rév = (RY

oxt - e Révl) is a solution
of the following system

—div Aexee(RY,) =0 in 2\@
—div Ainte(Ré\;) = 0N in wi,
Ré\fe =0 on I'p
Aext e(Ré\’/e =0 on I'y
Aext 6<R£{e)n - Aint e(Ré\{z)n + O(EN) on F
Ao RY, = Ao RY, on I’
Aint e(Ré\g)n = 0(eN) on I,

The remainders are considered as distributions in H™!(w¢ , ), H™Y/?(I") and H™/2(I"*) respectively.
Taking the variational form for the transmission problem, one can prove the uniform coercivity with
respect to € of the associated bilinear form and the continuity of the bilinear and linear forms. We
get, thanks to the Lax-Milgram theorem and the Korn’s inequality, that there exists a constant C,

depending on N but independent on ¢, such that

<CeNL

|
HY (2\@)

€,e

To improve the precision of the remainder, we write

N N+2 N+1, N+1 N+2, N+4+2
Re,efRa,e +e u’e te ue

and get the estimation

N
€,e

us — uf

— N+1
e [N]HHl(Q\D) h H s et (28)

HY (2\w)
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Secondly let us focus on djy) := u[EN] — v‘[SN]. For N =0, we have u[eo] =ul = v‘[eo], i.e. djg) = 0.
Hence, thanks to the previous estimate (2.8)), there exists a positive constant Cj, independent of ¢,
such that

HT[EO] HHl(Q\w) < Coe.

For N =1, dp) = u*[fl] — vfl] satisfies the following system

—div Aexte(d[l]) =0 in Q\w
d[l] =0 on FD
Aext e(d[l])n =0 on FN

(Aexe e(dp)n + C=(dpy)) = e*divp (o, (ul)) on I

Let us notice that the last equality comes from Lemma[2.I] and the right hand side is considered as
a distribution in V'(I"). Writing the variational form, we deduce, thanks to Proposition and
Remark that there exist two positive constants C,C’ > 0 such that

|d < CE|[divp(o, (u))llv(ry < C'e|lulllvr-

(1] Hum\m)
Moreover, thanks to the condition f € HY?(2\@), the local regularity in a neighborhood of w
ensures that the solution u? of Problem (with the boundary condition given by ) belongs
to H*/2(£25\@) for some smooth open set 25 such that w CC 25 CC 2\@. Then ul|, € H(I)
and divp (o, (ul))|» € L*(I). Using the local regularity of the solution u of Problem with
the Neumann boundary condition , we obtain that there exists C” > 0 such that

|| [egzr2(pm) < Cl|dive (o, (wd))lL2r)-

Finally, using the continuity of the trace operator and the continuous embedding H'(I") ¢ V(I),
we obtain that there exists C"' > 0

11 [l 24z < € € Ildivr (o (u))l 2.

Using the triangular inequality and inequality (2.8]), we conclude that there exists a positive con-
stant C1, independent of &, such that
P H < Che2.
H P

Remark 2.1 The regularity results used in the above proof can be found for example in [43, Chap-
ter 4] or in [13] Theorems 9.25 and 9.26, and Remark 24] (notice that the mentioned results in [13]
concern global regularity results but the local regularity results are then classically deduced using
a cut-off function).

3 Shape sensitivity analysis

This section is devoted to the proof of the existence of the shape derivative of the state u, solution
of Problem . This step is done following the general method exposed for example in [35]
Chapter 5] which consists in using a change of variable and the implicit function theorem. Then
we prove the characterization of the shape derivative u’ claimed in Theorem We conclude this
section with an asymptotic analysis for the shape derivatives of the transmission problem
which shows that we can interchange the asymptotic and shape sensitivity analysis.

We have first to introduce some notations. Let us define {25 an open set with a C'">° boundary
such that

{re?; d(z,002)>6/2} C 25 C{x e 2; d(z,002) > /3}.

Then, in order to make a shape sensitivity analysis, we define
_ 1)
u .= {9 € C*>® = C* N W™ (RY); supp() C 25 and ||0]|2,00 < min <3, 1>} (3.1)

as the space of admissible deformations. This space enables us to perturb only the object w and
not the fixed domain (2.
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3.1 Existence of the shape derivatives for the GIBC model

In this section, we prove that the solution u € H(£2\w) of the GIBC Problem (1.4)) is differentiable
with respect to the shape w. Notice that if @ € U, then (I + 0) is a diffeomorphism. For such
a0 cU and w € Op, we check that 2 = (I+ 0)(2) and we define the perturbed domain

wy 1= (I + 9)(w) € Os.
First we need to introduce the following Piola transform and prove the following result.
Proposition 3.1 Let @ € U. The adjoint Piola transform of (I+ )~ defined by

P*(0) : H(2\w) — H(2\wy)
u— ((Id +ve)! u) o(I+6)!

is an isomorphism and we denote by P~ () its inverse.

Proof The only point is to prove that P*(0)y belongs to H(2\wg) for all ¥ € H(2\w). Firstly,
for ¢ € H(2\@), it is obvious that P*(0)v belongs to H'(2\wy) and that ¢ = 0 on I'p. Sec-
ondly, the restriction of (I + V6) " to the boundary I" maps {y e HY(I'); ¢ -n= 0} into HY(I).
Moreover, we have [35, Proposition 5.4.14]

P*(0)n

= [P n] 3.2)

g :

Then P*(0) is an isomorphism from V(I') to V(Ip) (i.e. the tangential component remains
in {yp € H'([3); ¥ - ng = 0}).

Let 8 € U. In what follows, V, and divy, are respectively the tangential gradient and surface
divergence operators according to the boundary I. Let consider the solution uy € H({2\wg) of
the following perturbed problem

—div (Aext e(“@)) = f in Q\@
Uy = 0 on FD
(Aext 6('“/0)) n=g onlly (33)
(Aext er, (UQ)> ng —edivy (o ) (ug)) =0 on I,

where ngy represents the exterior unit normal to Iy given by (3.2), where

1
€r, (’u,e) = §Hd79 (Vrg’u,.g + tVQUQ) Hdﬁ and Hdﬁ =15 — ng @ ny,

and where
o, (ug) == Aint (div we) g0 + 24ing e, (up).
Then ug € H(2\wp) is the solution of

/ Aexve(ug) e(pg) */ g Py +€/ o, (we): Vipy = / TR
2\wy I'y Iy 2\wp
Vipp € H(Q\DG).  (3.4)

We will apply the general method exposed in [35, Chapter 5] and [27, Section 3.1] using the
adjoint Piola transform and the implicit function theorem on

u’ =P (0)uy € H(2\D).
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Lemma 3.1 For 8 € U, u® € H(2\w) satisfies for all ¢ € H(2\D)
Aext . Jo ("D1(0): V(D1(8)u?)) ("D1(6) : V(D1(8)¢))

+ Hext /Q\ Jo (D1(6)V(D1(8)u’)) : (D1(8)V(D1(8)) + “(D1(8)V(D1(6)y)))
- /F g-p+ 5Xint /F we (th(H) : Vr(Dl (0)’1140)) (tDQ(H) : VF(Dl (0)(,0))
| wo (D2(0)V r(D1(0)u?)) : (D2(8)Vr(D1(8)u’) + *(D2(0)Vr (D1 (0)u?)))

+ EMint
— ftint / wo (D(8)V (D1 (8)u’)n’) - (D(8)V (D (8)p)n’) = / ( o (1+6))-D1(6)p Jo,
r 2N\w
where n% :=ng o (I+ @) and where
Jo :=det (I + V@) e Whe (Rd> ,
we = det (Iy + V) Ht (I + Vo) n” e Whee (RY),
Di(8) := (14 + V)~ € C' (R%, Ma)
Dy(0) == (I +Vr8) " € C (I, May).

Proof Let ¢ € H(2\w). We define ¢g := P*(0)p € H(2\wy). Thus, using g as a test function
in the variational formulation (3.4]), we obtain

Ao [ (div (P (O)u) (div (P*(0)) + 24t [ V(P (6)u"): (P (O)y)

2\wg 2\we

- /F g+ (P"(0)¢) + e | (diviy (P (O)u) (div, (P (0)0)

+ 2 [ V(PO (P (0)0) = [ EERCOR

Iy

Hence, using the change of variables x = (I + 0)(y) in the integrand and the following formulas

Vwo([I+86) "o (I+80)=mDD(0)Vv,
div(vo(I+60) 1) o(I+6)=Tr[Vwo(I+0) 1 o(@+86)= 'Di(8): Vv,
Vi(wo(I+0)"1)o(I+80)="Dy6)Vrv,
div(vo(I+0) ) o(I+80)= Tr[V(vo(I+8)Ho(I+86)= "Dy(0):V v,
Vi (ug) e, (pg) = 5V (ug): (Vi (¢) +' Vi (¢) — 5(Vi (uwe)ng) - (Vi (pg)np),

(P (0)p)iry = @iry:
we obtain the announced result.
Lemma 3.2 The application @ € U — u® € H(2\w) is differentiable in a neighborhood of 0.
Proof Let us consider the application F : U x H(2\@) — L*(£2) defined for all ¢ € H(2\w) by

(F(0.0) , @) = Aexs /Q o (Pi0):V(D1(6)0) (D1(0):V (D1 0))
o [ _Jo(PUOTVDLOW) : (PLOV(Pi(O)g) + POV (Ps(6)¢)
-/ 90 A [ o (D2(6): To(DL(O) (Dal6): V(D1 6)9)
+5pintﬁwg (D2(0)Vr(D1(0)v)) : (DQ(O)VF(Dl(B)v) + t(DQ(O)V[‘(Dl(B)’U)))

- Euim/ we (D2(0)Vr(D1(8)v)n’) - (D2(6)Vr(D1(8)p)n’) —/ (fo(I+0)) Di(0)p Jp.
r 2\w
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We have, for 8 = 0, F(0,u’) = F(0,u) = 0. Moreover, we prove analogously to what is
done in [35, Proof of Theorem 5.3.2] that the application F is C*. Finally, we compute for all
w,w € H(L2),

D, F(0,u)(w) - w = . Aexte(w) :e(w) + E/FUF (w):Vyw.

Thus, D, F(0,u) is an isomorphism.

Hence, the implicit function theorem applies and then there exists a C! function 8 € U
v(0) € H(2\W) such that F(0,v(0)) = 0 in a neighborhood of 0. Using the uniqueness of the
solution of such a problem, we obtain that 8 € U — u’ € H(2\w) is C* .

Lemma 3.3 There exists wg an extension in R? of ug such that @ € U — g € LQ(Rd) 18
differentiable at 0.

Proof For 0 € U, ug = P*(0)u’ € H(2\wg) C H'(2\@g). According to the differentiability
of @ — u’ (see Lemma and Stein’s extension theorem (see, e.g., [2 Theorem 5.24]), there
exists ﬂe, an extension of u?, such that 8 € U — a’ e Hl(Rd) is differentiable at 0. Moreover,

OcUU— (I+60)"' —TcC"°RY) and O U — (I;+VO) ' € CV®°(RY)
are differentiable at 0. Thus,
Vii0ecl ((Id +ve) 'l (140 - 1) e H'(RY) x C*(RY)
is differentiable at 0. We apply [35, Lemma 5.3.9] to get that
Vs : (h,p) € HY(RY) x CH*°(RY) = ho (I+ p) € L*(RY)
is C'. By composition, 8 € U ~ 11y := Vo 0 V1(0) € L*(R?) is differentiable at 0.

Using the Fréchet differentiability given by this lemma, we obtain the Gateaux differentiability
in the direction V' € U: there exists u;, extension in R? of u; such that the function t € [0,T)
%, € L*(R?) is differentiable at 0 by composition. Hence, we prove the following result.

Lemma 3.4 The solution u of Problem (1.4)) is differentiable with respect to the domain w € Os.
We denote by u’ its derivative at 0.

3.2 Shape derivatives for the GIBC problem (Proof of Theorem

Since we proved in the previous section the differentiability with respect to the domain, we can now
compute the shape derivatives of the state. For the reader’s convenience, let us recall the definition
of the shape derivative in our situation (see [35] for details).

— If the mapping @ € U + ugo(I+80) € L?(2\w) is Frchet differentiable at 0, we say that 6 — g
possesses a total first variation (or derivative) at 0. In such a case, this total first derivative
at 0 in the direction 0 is denoted by ug.

— If, for every 2 CC 2\@, the mapping 6 € U +— ug |y € L*(2) is Frchet differentiable at 0, we
say that @ — wuy possesses a local first variation (or derivative) at 0. In such a case, this local
first derivative at 0 in the direction @ is denoted by wuy, is called shape derivative and is well
defined in the whole domain 2\w:

d
uly = a(UtG‘@) l,—o ineach 2 CC 2\w.
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In the following, for V' € U, we denote by u’ the local first variation wj, which is referred as the
shape derivative of the state. We also use the notation

Vo=V - n.
Let T > 0. For a given perturbation V € U and t € [0,T), we define
wr=I+tV)(w)

with boundary I} and we consider the solution u; € H(2\w;) of the following perturbed GIBC
problem:

—div (Aexte(uy)) = f in 2\wg
;=0 onlp
3.5
(Aexte(us))n=g only (3.5)
(Aext €(us)) ny — edivr, (o, (ur)) =0 on I3,

where n; represents the exterior unit normal to I}, where
1 t
€Ft (Ut) = iﬂd’t (thut + thut) Hd,t and de = Id —n: ® Ny,

and where
UFt (’U,t) = Xint (diVFtut)Hd,t + Q,Llfint ept (ut)

Proof (Proof of Theorem For t € [0,T), we consider Problem (3.5). By differentiating with
respect to the shape at ¢ = 0, we classically obtain (see, e.g., [42 Theorem 3.3] or also [35]
Chapter 5))
—div (Aext e(w')) =0 in 2\w
u' =0 onI'p
(Aexse(u’))n =0 on I'y.

Let us now compute the shape derivative of the GIBC (Aex e(ur)) ny — divr, (o, (ur)) = 0
on I';. We define by 7 the transformation that maps the restriction of u; to I'; onto the restriction
of uy o (I+ tV) to I'. Since we know that the shape derivative depends only on the normal
component of the variations V' (see, e.g., [35, Theorem 5.9.2]), we compute the material derivatives
in the direction V' = V,n. We first recall that we have [35, Corrolaire 5.2.5]

d /
T {Ttut} o u' + V,0hu
Then we get
% (T Aext e(ut))(Ttnt)} = (Aext e(u'))n — (Aexs (1)) V Vi + ViOn (Aext e(u))n
(Aext e(u'))n — (Aexs e(w))V Vi + Va(div —divr) (Aexs e(w))
= (Aexs e(u))n — (Aexs e(w))VrVy — Voo f — Vadivy (Aexe e(uw))
= (Aexse(u))n — Voo f — divy (Vi Aexs e(u)).

Since (Aext €(u))n = divp (o, (u)), we have

d

= (A s ew) (rimy)|

= = (Aoxe e(w))n — Vo f — divyp (vnnd(Am e(w))I1,)

— VaH(Aext e(uw))n — divp (Vo I g(Aext e(u))n @ n).

Moreover, we have (see [22, Theorem 5.4])

d
= (7T = —ValD®Vrul + 06 ([VrulVrV)
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and (see [22, Theorem 5.6])

%[Tt dithTt_l} O'u, = —VnTr[DQpru] + [Vruln- V5V,
t=
= —V,(divp(D?b — HII;)u + Hdiv I yu + Tr[(D?b)?](u - n))

+Vr(u-n)-VrV, — [D?]u- V.

Then,
dr .. B
T |:Tt divp, 7 L:oap (u) =
-V, (divr (D2 — HIl,)o, (w)) + Hdivr (o, (u))) — (D20, (w))V Vi

We have

Or, (u) = Xint (‘l'tdiV[*t Tt_l'u,) (I —Tn ® Ttnt)

+ 2/king (I —Tn ® Ttnt) (% ([TtthTt_l’u/] + t[TtthTt_lu]) )(I — T ® Ttnt)

and

d
a |:(I — TNt X Ttl’lt):|t:0 =neg V[‘Vn + VFVH ® n.

Hence we obtain

%[%Lo(“’) = Vi (Nt (TX[[D?0]V pua] ) Iy + 2ptin 4 [3 ([[D?6]V ] + F[[D?6]V pue])] 11)
+ Aint ([Vruln - VeV + Aing(divru) (n @ ViV, + ViV, @ n)
+ 2pine [3 (Vrun @ VeV, + ViVy, © [Viuln) |

+ 2pint [ (M@ (e, (w)VVa) + (e, (w)VrV,) @n) |

and we deduce

.o d
le[’a [UQ] t:O(u) =
—divy (vn (Rt (Tr{[D2B]V ) I + 2paime T [ ([D26]V ] + H[[D26)V pue])] 114) )
+divy (N ([Vruln - VeV a + 24 [ (Vruln @ VoV + V0V, @ [Vrujn) )
+ (HII4 + [D?b] + ndivrIly) (o, (w)VrVy).

We conclude using the chain and product rules that

d d . -1
% |:(TtACXt e(ut))(‘rtnt)] o + e [Ttlept T L:OJF (u)

+ divF% |:0Ft:|t:0(’u,) +divyo,. (;t [Ttut] t_0> =0.

3.3 Asymptotic analysis for the shape derivative of the transmission problem

This section focuses on the asymptotic analysis of the shape derivative of the solution to the
thin layer transmission problem (1.2). First we give a characterization of the shape derivative as
a solution to a new transmission problem with non-vanishing jumps. The existence of the shape
derivative follows from standard procedures (see, e.g., [42] Chapter 3.4]). Hence we claim the
following result which characterizes the shape derivative of the state (see, e.g., [42, Theorem 3.3
and [38] for the jump formula).
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Theorem 3.1 The thin layer transmission problem characterizing the first shape derivatives in
the direction V is

—div Aexre(uf) =0 in \w
—div Ajpre(uff) =0 in wi,
uf =0 on I'p
(Aexte(u®))n =10 on I'y
Aexte(uf)n — Ajpce(uf)n =V, f + dinVanAexte(ui)Hd — divpVp g Aince(us) Iy on I’
ulf —uf = =V, (Oqul — Ohus) on I’
Ainte(ul n® =divers 1(Vn) (Aines (uf)) on [*.
(3.6)

Then, for N = 0,1, we want to approximate the shape derivative ¢, solution of Problem ({3.6]),
by the solution w[EN] of some boundary value problems of the form

—div Aexre(w$ [ ]) =0in N\w
[] =0 OnA[b

(Acxt e('w[EN])> n=0on Iy
C (5,Aexte(w[EN])n,wa}) =hon I,

where C (5, Aexte(w‘fN])n, 'w[EN]) is a so-called Generalized Impedance Boundary Condition (GIBC).

The following result gives the GIBC modeling an approximation up to O(eV*1) of u/¢ for N = 0, 1.
We recall that “[50} = u? and ufu = uY + eul (see Section .

Proposition 3.2 The GIBC, defined on I', modeling the interior thin layer effects of the inclu-
sion w on the first shape derivative for N = 0,1, are given by C (5,Aexte(wa])n, w[EN]) =h
with

C (5, Aexte(wa])n, w[EN]) = (Aexte(w[aN])n) + CE’Nw[EN],

where C&0 := 0 and Co'lw := —edivp (Zintep (w)), and with
h=V,f + Fi’N

where Fi’o =divp (Vnﬂd (Aexte(u[ao])) Hd) =divpV, (Zextep (Ufo])) and

F! = dive (Vally (Aeae(ufy)) 14) — edivr(Va([D?] — H110) (e, (ufy) ) )
— edivy (V (Amt [ 11,([[D*)V rugy| + t[[D2b]Vpu‘€1]])Hd]) )
+edivr (Ame, (Va(Onufy) = 45 Aee(ufn) ) )
+& (D] + ndivpIT,) divy (Vn (Zimer (ufyy )))

+edivy (Amt[ (IVrufyn ® ViVa + VirVa @ [Vrufn )])

Proof We set w(z) = > "u”(x) in 2\w and uj*(x,s) = > e"Ul(x,S) in I" x [0, 1]. Following
n>0 n>0
the computations given in Section |2| (see also [37]), we obtain

U2(,5) = a+ Vi (Gl + 45 (B — Aueluln))
Ui (-, 8) = —SA7 ' BUY (-, 0) + S4g 1d1VF( ( mtep(u )
+ul 4V, (Ohul + Ay (BYul — Acge(ul)n))

€
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and

7

AgU2(.5) = <S; B S) {(AlAng? — Ag5) UY(-,0) — Ay Ag M divy (Vi (Aimeer (ui)))}
] (BL45BY  B) UL 0) ~ BYAT div (i (e, )
—divr (Ve (e, (45 BYul —ul))) — divr (Va([D?8] ~ HITy) (Aee, () )
v (Vi (e (u0) ) ~divr (Vi (A [ (D217 ] + (D)7 ]} 1,]) ) ~BEUL,0)|-

For N = 0, we have
Acxie(ud)n = 95 Ao Uj (2,0) + BOU(x,0) + Vo f + divp Vi Il Acyre(ul) I,
—divp (Vn (Aimep (ug))) — #‘é‘mntdlvr (V (11 Acxee(ug)n )Ud)
= Vo f +divp VoIl Aere(u®) 11,

In this case we approximate u/° by u and we obtain the GIBC satisfied by w[so].
For N =1, we have

Aexie(ul)n = 954U (z,0) + BYUL (2,0) + divp Vi I Acyre(ul) 1Ty
—divy (Vo (Hadince, (ue)a)) = x-23—dive (Vo (- Aexee(ug)n) Ia)
= divp Vol gAexre(ul) T, — #ﬂmdivr (Vo (- Aexte( in) I1,)
+divp ( el (w4 Vi (5 — Ag " Aexee(u )
+divy (Aine, (Vadg 'Biul))) — divp (Vi Amtep(
—divr (Va([D%] — B 1) (Ainee - (uD) )

1BO O ))

F(AAG — BYAGY — HI,) divr (Vn (Aime - (u)) )
—divr (V (A [L114([[D?6]V pul] + [[D25]V puuf ])Hd])>
Moreover,

(M Ay —BYAST — HIy) = ([D%] + ndivpIy) — W (Hn®n —Vr(n-)),

n-divp (V (Amte (u, ))) Von- d1Vp( (Amte (u, ))) Van - Aexre(u )n

Then
v, (Vy (0 Aesce(un) IT,)
)\ll’lt + 2:U/mt
>\int . - 0 _
b (Hnon = V() dive (Vo (e, (u) ) =0,
and

divy (Aince, (Vadg 'Biul)) — divp (Vidinee, (A5 ' Bful))
= divy (Am[ (IVrulln® ViV + ViV, @ [Vrulln )])

In this case we approximate u/* by u? + eul and we obtain the GIBC satisfied by wfl].

We focus now on the remainder r'[EN] = v’fN] - w[N] for N = 0,1, where v’ [ ] is the shape
derivative of the solution ’U‘[EN] of Problem (2.1). We obtain the following convergence result which
claims (as underlined in [37]) that one can interchange the asymptotic analysis and the shape
derivative calculus.
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Theorem 3.2 Let N =0,1. There exists a constant C' independent on € such that
7' [n) l2e)< CeV e

Proof The result is obvious for N = 0. For N = 1, we recall that the shape derivative v'ﬁv] satisfies
the boundary condition:

(Aexte(v/[sl])n> + CS’N’U/E] = an —+ F;’l,

where

F;»l = divp (Vnﬂd (Aexte(vf1])> Hd) + edivp (Zintep (Vn (anvfl])))
— edivr (vn (Zim [%Hd([[DQb]va[i]] + t[[Dzb]vagl]])HdD )
~ edivy (Vn([DQb] _HII) (Zinter (vfl])> ) +& ([D2] + ndivpIly) divy (Vn (Zinter (vfl])))

+edivr (A |3 (Vrvf)n® ViVe + Vrve @ [Vrofn) | ).

We easily obtain Fg’l — Fi’l = edivp (Aimep (VnAalAexte(v[El])n)) and using the GIBC satisfied

by vf;;, we conclude Fi’l - F‘;’l = O(e?). The estimate results from Lax-Milgram theorem and the
Korn’s inequality.
Remark 3.1 For N =1, we have vfl] = u and vﬁ] = wu’. Thus the above theorem claims that

| u' = wf L2 @\@) < Ce’

One can also notice that, in the previous proof, Fy"' = &(u, V,,) where &(u, V;) is given in Theo-
rem

4 Minimization of the compliance

This part aims to show an application of the previous analysis on the classical problem of the
minimization of the compliance of an elastic structure. We recall that the compliance of a structure
is the work of the exterior forces which is here given by

J(2\w) := Aexte(u) : e(u),
N\w
where u € H(£2\w) solves Problem (1.4). We want to minimize the compliance (that is to say

maximise the rigidity of the structure) adding a penalization on the total mass of the structure.
Hence we want to minimize the following functional

J(N\D) := T(2\W) + £|2\w|

on the admissible sets O, where ¢ > 0 is a given constant of penalization. In other words, (2 is
fixed and known and we want to find the best hole w:

w* € argmin J(2\w).
weOs

To do this, we will use the geometric shape optimization method and make some numerical recon-
struction using a classical shape gradient algorithm. Hence we first prove the characterization of
the shape gradient of J given in Theorem and then perform some numerical simulations using
Freefem++ (see [34]).
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4.1 Shape derivative of the compliance (Proof of Theorem [1.3))

Using the variational formulation of Problem ([1.4]) with w as a test function, we obtain the following
more convenient expression of the objective function:

7(2e) = |

N\@

f~u+/FNg-u+/F(Aexte(u)n)'U-

Then we can prove Theorem

Proof (Proof of Theorem In a first step, we compute the shape derivative of the cost functional.
We have (see [35, Eq. (5.4)] and [35, Eq. (5.44)])

VI(2\w) -V = Q\wf cu' + /F Vof -u+ /FN g-u + /F (Aexte(u)n) - ' + u - (Aexse(u')n))
—|—/F (—u - (Aexte(w)V V) + Vion(u - (Aexie(u)n)) + HVu - (Aexse(uw)n))
- /mw fou't /p Wl /FN 9wt /F (Aexte(u)n) -+ u - (Aere(u')n))
- / - (Aee(w)V Vi) + / Vi (9att) - (Auee(u)n) + 1 - O (Ausse(w))n)
I I

—|—/FHVH(Aexte(u)n) -u,

noticing that d,n = 0 (see, e.g., [35, Eq. (5.66)]). We use the following equality (see, e.g., [35]
Proposition 5.4.9]) On(Aexte(w))n = div (Aexte(w)) — divp (IT4 (Aexte(w))) — H (Aexte(u)n) and
obtain

VI(\D) -V = Q\wf'u/+/Fan~u+/FNg~u/+/F((Aexte(u)n)-u/+u-(Aexte(u/)n))
[ @V + [ Vi) - (eelan)
+ /F Vau - (div (Aece(w)) — divy (I (Aee(w)))
= [ po / g [ (e -+ u- (Aoelw)m)
+ /F Vi (0n) - (Aesee(u)m) + /F Vo[V ] I (Aewie(u)))

N A\w A /FN 9w /F ((Aexte(u)n) - v’ +u - (Aexre(u')n))

—I—/FVn (e(u) : Aexre(u)).

In a second step, we introduce the solution p of the adjoint problem ([1.9) to spare us the
computation of u’. Let set

I:= fu +/ g-u +/ ((Aexte(u)n) - u' + u - (Aexre(u’)n)).
Q@ I'n r
Using the following second Green’s formula (see, e.g., [4, Theorem 2.6])

(Ao ) -p— [ ¥ Uenclpim),

/ ~ ((div Aexee(u)) - p — u’ - (div Aexte(p))) = /
2\w

(D)
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and using the characterization ([1.6) of u’, we get

Foul=— / o Ao (p)

N\w

_ /8 P (ee(a)m) - / u' - (Awwe(p)n)

o(2\w)

:/Fp-(Aexte(U’)n) / /F“ Aexce(p)n)

:/Fp-(f(u,V)—l—EdIVpJ (u)) - /FNU / u' - (Aexse(p)n)
_ /F P E(u, V) — / ' - (Ase(p)n — edivro, (p)).

r
Then

I = /Fp E(u, V) — /Fu’ - (Aexte(p)n — edivpo . (p)) + /F ((Aexte(u)n) - u’ + u - (Aexre(u')n))

- /F pE(uVa) + /F (~(Aexie(u)n) - o' + - (Agge(')m))

= [ pcw v+ [ s,

Finally, coming back to the cost function, we obtain
T(\@) -V =T+ / Vi (e(w) : Aaxe(w)) = / (p+u) - E(u, Vi) + / Vi (e(w) : Aaxe(w) .
r r r

Let set v := p+u. Then we use the following integration by part formula to compute the L2-adjoint
operator £* with respect to the second variable of £ and write

/F'uf(u,Vn):/FVnﬁ*(ua’U)-

More precisely, we use the well-known results [35], Eq (5.51)]: for a scalar density ; and a tangential
vector density ¢, we have

_/(VFSD1>"P2 Z/@ldivr‘{’z-
r r

Then, for every terms of (u,v), we obtain successively:

/Fdivr (Van (Aexte(u)) Hd) R /

r

—/FdiVF<Vn([D2b]—HHd)aF(u)) ~v:/F(Vn([DQb]—HHd)aF(u)>:(va),

f/ divF(Vn (th(Tr[[DQb]vpu])Hd)) .v:/vn([D%}vpu): (Aint (divpv) ) .
r r

(vnnd (Aoxce(w)) nd) - (Vro),

Moreover
- /F divy (Vn (2ptint Ia [3 ([D?0]V ru] + [[D?6]V ru))] 114) ) ‘v

_ /F Vi (D8] ra) © (2ptinee,. (v))
and

/F divr (0, (Vadnu)) /F Va(Onuw) - divr (0, (v)),

/F ([D?0] + ndivpIly) (divy (Vo Voo (uw): (Ve ([Vroln)),

||
S~

/F divF(Xint([Vpu}n-VFVH)Hd> = /F Vadivy (Rt (divro) [V ruln)
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and finally

/ divp (2Mint [% (Vruln@ VeV, + ViV, ® [Vpu]n)])-v = / Vadivr 2uinte, (v)[V ruln).
r r

We conclude by summing all the right-hand sides.

4.2 Numerical simulations for a 2D-cantilever

For the numerical simulations presented in this section, we consider the case where we optimize
a part of the boundary of the solid which is not necessarily an inclusion. Hence we consider an
elastic solid with a reference configuration §2, a bounded open set of R?, built on a part I'p of its
boundary and subjected to aload g on another part I'y. We consider here that I" := 92\ (I'p U I'y)
is a nonempty set and is the only part of I" which can be optimized (see Figure . We assume
that f = 0, then the displacement w € H({2) of the structure is the solution of

—div (Aexse(u)) =0 in £2
u=0 onlp
(Aexte(u))n=g on I'y
(Aext e(u))n —edivp(o,.(u)) =0 on I.

We want to minimize the compliance adding a penalization on the total mass of the structure.
Hence, as in the previous section, we consider the functional

J(Q):j(())+€|(2\:/QAexte(u):e(u)—i—Mm.

According to Proposition [I.3] and taking into account of the shape derivative of the volume, the
shape derivative of the cost functional J can be written in the form

VJ(2) -V = /FVn (5*(u,p +u) + (Aexte(uw) : e(w)) + E), (4.1)

where V' is an admissible deformation and where £* and the adjoint state p are defined similarly
as in Proposition (1.3

Fig. 2: A cantilever.

For the numerical simulations, we use Freefem++ (see [34]) and the following parameters:

e =0.05 g = (Ol), ¢ = 0.05 (the penalization of the volume), Y = 15 (the Young Modulus),

v = 0.35 (the Poisson Ratio), A = Y x Ttz and p = % (the Lamé Moduli).
Moreover, we define the initial shape (2, as follows:

—Ip:={x=0; y=[-1,-05]U[0.5,1]}

—I'y:={z=4; y=[-0.1,01]}

— I' is given by joining the ends of the segments by straight lines,

and we define a big box D as the rectangle formed by the points (—0.5,2), (=0.5,—2), (4.5, —2)
and (4.5,2). We then follow the classical above algorithm.
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Algorithm

1. We initialize the algorithm with a shape {2 contained in a big box D.
2. We solve the problem on the current shape {2;.

3. We define V € U, where

&::{V;: ij)eHl(D); V=0only,V,=0onlp,
Y

V. =0 on the left and the right side of D, V', =0 on the top and the bottom of D},
such that for all W € 51,
/ Ae(V):e(W) +V.I(2) - W = 0. (4.2)
D

4. We defined the convected set of £2; along the field 8 during a “small” time §t
.Qi+1 = X,L(.Q»“ (%)

where X; : R? x R — R? is the application such that

8;? (z,t) = V(X ;(x,t)) forall (z,t) € R? x R.

5. If V' is small, we stop, else we return to the step 2.

{ X, == for all ¢ € R?

We obtain the following result exposed in Figure

xxxxxxx R—— Flal Shpe;Cont ctioal 0 379937

Fig. 3: Minimization of the compliance for a 2d-cantilever: initial shape (left) and final shape (right).

We also make a simulation adding a hole (with the generalized boundary conditions) in the
initial shape. We obtain the following result exposed in Figure [4

A Well-posedness of the GIBC problem

This section claims the well-posedness of the GIBC model (1.4)) for non-vanishing boundary conditions on I". Hence
we focus on the following problem for some given f, g and h:

—div (Aext e(u)) = f in (1{\5
u=0 on
(Aexte(u))n =g on Ff; (A1)
(Aext e(u))n —edivp(o,.(u)) = h onI.

In the following, the dual space of H}D (2\w) is denoted by fl;; (2\w).
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Fig. 4: Minimization of the compliance for a 2d-cantilever with a hole: initial shape (left) and final
shape (right).

Proposition A.1 Under the assumptions f € ITI;; (2\@), g e H~Y2(I'y) and h € V/(I"), Problem (A1) admits
a unique solution u € H(2\w). Moreover we have the following estimate, for some positive constant C' > 0,

lullane) < C(Hf“ﬁ;l @) T19la-172(pyg) + IRllv(ry) -
D

Proof Since |I'p| > 0, we can use the second Korn’s inequality (see, e.g., [20, Theorem 6.3-4]) to get the existence
of a positive constant C(o\z, ), which depends only on 2\w and I'p, such that

Ciane,rp) lvlla (o\@) < lle()llLz(ow) < C(_()l\w’['D)”u”Hl(Q\w)'
We then obtain the following weak formulation associated to Problem (A.1)): w € H(£2\w) solves
a(u,v) =£L(v), Yv e H(2\w)

where
a(u,v) := A /Q\w (divu) (divv) +2p /r)\w e(u) : e(v) + eXing A (divru) (divrv) + 2eping /;“ er(u):ep(v),

and

L(v) = f~v+/ g-v+/h-v,
2Q\w I'n r

Notice that the above integrals can be understood as duality products. Since the constants A, g, Aint and ping are
positive, the symmetric bilinear form a is continuous and coercive on H(2\w). Indeed, since the trace operator is
continuous and since divu = Tr(e(u)) and divpu = Tr(e(u)), then there exist two positive constants ¢; and ¢
such that, for any u,v € H(2\w),

IN

la(u, v)| < cille(w)lL2(\m) lle(@)llLz (@) + c2¢ller (W2 ller (0)llLz(r)

< (c1 + coe) max(1, C(QI\EFD))||UHH(9\@ vl (2\w) -

A

Then, there exists a positive constant c3 := min(2,uC’(9\g7pD), 2€1int) such that

a(u,u) > 2ulle(@)|22 () + 2epintller (W)l 22 ) > esllullonm)-

The linear form £ is also continuous on H(2\w). Then the Lax-Milgram theorem ensures the existence and uniqueness
of the solution u € H(2\W).

B Asymptotics in the thin layer

This appendix is devoted to the derivation of the asymptotic expansion of the Lam operator in the thin layer and
the traction operator on the boundary with respect to the thickness parameter € — 0.
Recall that the thin layer coating the interior of 2\w is defined by:

wiy ={z+sn(z) |z €l and 0 <s <e}.
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For any smooth scalar function u defined in wf ; and 0 < s < ¢, we set u|r, (z + sn(z)) = u(z, s) and, for N € N*,
we have (see [40, Egs (2.5.182) and (2.5.208)])

(Vu)(z + sn(z)) = n(z)dsu(z, s) + Vru(z, s) + Z st (=1)* D%V (e, s) + O(sV ).
(=1

We also have, for N € N* and for any smooth vector function u defined in wf , (see [37, Section 2]),

N
(divu)(z + sn(z)) = n(z) - dsu(x, s) + divru(z, s) + Z st{(=1)!Du(z, s) + O(sNT1),
=1
with
D'w = Tv[[D?]V 1) = divp([D?b] — H)ITga + Hdivp ITq@ + (H2 — 2C)(n - @),
where H = Tr[D?b] is the mean curvature and G is the gaussian curvature. We use the following change of variable
y =z + sn(z) = z + eSn(z) with S € [0;1]. We set u(z,s) = u(z,eS) =: U(z,S) and we obtain the following
asymptotic expansions when € — 0

N
(Vu)(z + sn(z)) = én(x)@sU(ac, 8)+VrU(z,S)+ > S~ D)V U(x, S) + O(NT),
=1

N
(divu)(z + sn(z)) = én(:p) -05U(x, 8) + divpU(z, §) + Y e*S4(~1)' D U(z, §) + OV 11).
=1

Combining the last two equalities, we obtain

Aince(u)(z+eSn(z)) = é (Aint (n:05U) L+ ping (n®0sU+05U®n) ) + (Aint (divrU)Lg + pine (VU] + H[V P U]))

+ 3 (~1)letst ()vmt(DzU)Id + pans ([[D2B])'V 1 U + i[[DQb]fva])) .
>1

Using the following formulas

[VrUln =Vr(n-U) - [D?U, divp(n ® U) = HU, divp(U ® n) = ndivyp U + [D?b)U,
Tr[[D?b]Vr(n® U)] = Tr[[D2b]%]U, and Tr[[D?h)V (U ® n)] = nTr[[D?6]V U] + [D?b)?U,

we finally obtain (2.2)). Notice that we have

A2 5U = divy (A (divrU)lg + i (VU] + {[VU])) = Aien(DYU) — i [D26]V 1 Uln
= (Nint + int) Vrdive U + ping Ar U — AipgnTr[[D26]V p U] — ping [[D2]V - Uln,

“Ainen(DMV) = ping[D26]V V]n — D1 (/\im (- Vg + (0 ®V +V® n))

= —pins Tr[[D2]2]V — (Aint + pint) (n(Tr[[D?6]V L V]) + [D?8]Vr(n-V)).

A2’1V

Moreover the traction trace operator defined on the surface I's := {x +eSn(z) | * € I'} is given, for any 0 < S <1,
by
1
Ainte(U) = —40dsU + B{U + > 'S'B{U,

€ >1

where BYU := Aipyndiv U + pine [V Uln and, for £ > 1, BYU = (—1)° (,\imn(DfU) + mm[[D%]’?va}n).
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